Skip to main content

My first day playing around with Vert.x

I have been reading quite a lot about Vert.x recently and finally the day before yesterday I sat down and spent some time exploring it by writing some code. Today I would like to present the outcome.

A little bit of history

Like all Reactive frameworks/tool-kits/libraries, Vert.x is inspired by Node.js.
Back when it was released, Node.js shocked many Java developers who looked down on Javascript, on top of owning the Web client side, JS wanted to conquer also the server side!
And thanks to its non-blocking nature, Node.js performed better than typical Java application servers such as Tomcat or Glassfish.
Then the Java world reacted (pun intended) and today Vert.x is one of the most matured reactive technologies for the JVM.

First Vert.x application 

When trying to build my first super-simple reactive (not really) application using Vert.x, I started following this tutorial from the lead developers of Vert.x.
That's great stuff, but I found it a little overwhelming as the first hands-on experience. I understand that the authors are eager to highlight most of the nice features of the technology but I decided to write my own example focusing just in the very basics.

The example application uses Java 8 and Maven and no custom Vert.x configuration (just the default). The main class creates one main verticle and then that verticle creates two more verticles: 
PublisherVerticle and ConsumerVerticle
The PublisherVerticle simply publishes (broadcasts) five messages using JSON as serialization and the ConsumerVerticle receives the messages and just logs their contents.
The messages are just POJOs.

At this point, you may wonder what a verticle is. Vert.x uses its own terminology, I recommend this post in order to get familiar with it. In simple words, a verticle is a Java class whose life-cycle is managed by a Vert.x instance and it can deploy and start other verticles,  it can also communicate with other verticles using the Event Bus.

This example is useful for people who are new to vert.x since it showcases the following:
- how to start vert.x
- how to deploy and start verticles
- how to serialize/marshal a POJO to be encapsulated inside a vert.x message using JSON
- how to publish a message to the vert.x event bus
- how to receive a message from the vert.x event bus
- how to construct a POJO from the received message
- how to stop vert.x
- the asynchronous behaviour of vert.x

And here you have the code.
Looking at the pom.xml you'll see that just adding the vertx-core dependency is enough, as usually, Maven will download the required transient dependencies for us:


As you can see, Vert.x uses Netty for the network communication (I like that it does not force you to use HTTP only) and Jackson for JSON serialization.

To run the example application you just need to execute its main class class, and looking at the output helps to understand the "everything asynchronous by default" philosophy of Vert.x. 
Even the call to start Vert.x is asynchronous, that is why the main method is the first one to finish:


We can also confirm that Vert.x manages the pool of threads for us so we do not need to worry about it.

Since this is a simplistic example, all verticles run on the same JVM/process, but one of the features of Vert.x is its convenience to implement microservices, thus, I could easily refactor the application in order to place each verticle in a different (Maven) module (and run it on its own runtime environment or in different machines) but that's subject for a future post.

Vert.x is a broad topic and I would like to highlight what this post does not cover and I may explore in the future:
- using a different serialization other than JSON (Google protobuffers for example)
- communication with external services (using HTTP or simply TCP or Websockets) either directly or through the Event Bus.
- using Vert.x as the back-end for a Web app (front end could be Angular or React)
- using Vert.x as the back-end for a native mobile app (probably Android since I already have some experience)
- Vert.x cache capabilities (Shared Map) 
- using different instances of Vert.x in the same application

Thanks for reading!

Comments

Popular posts from this blog

Using Apache Kafka to implement event-driven microservices

When talking about microservices architecture, most people think of a network of stateless services which communicate through HTTP (one may call it RESTful or not, depending on how much of a nitpicker one is).

But there is another way, which may be more suitable depending on the use case at hand.
I am talking about event-driven microservices, where in addition to the classic request-response pattern, services publish messages which represent events (facts) and subscribe to topics (or queues depending on the terminology used) to receive events/messages.

To fully understand and embrace this new software design paradigm is not straight-forward but it is totally worth it (at least looking into it).
There are several interconnected concepts which need to be explored in order to discover the advantages of event-driven design and the evolutionary path which led to it, for example:
Log (including log-structured storage engine and write-ahead log)Materialized ViewEvent SourcingCommand Query Respons…

Vert.x microservices: an (opinionated) application

First of all, sorry for the tautology in the title, a library can be either opinionated or un-opinionated (such as Vert.x is), but an application can only be opinionated.
However, I decided to include "opinionated" to help getting my point across even though is redundant.
The Motivation  I am a big fan of Vert.x and the official documentation is quite good, yet it is not straight-forward to understand how it works and how to use it.
There are a lot of blogs and articles describing Vert.x terminology and its concurrency model.
There are also tons of "Hello World" Vert.x applications on Github, and the rest seem to be just variations of the already typical "Web chat application using Vert.x".
On top of that, many of them are outdated (using AngularJS instead of Angular2+, for example).

The only two exceptions which I found are:
vertx-microservices-workshop: a demo application by the Vert.x development team.
ngrx-realtime-app: proof of concept application focu…

Shared Ledger Simulator

I have been interested in the shared/distributed ledger technology (a.k.a. block chain, a.k.a. the magic behind cryptocurrencies) for more than a year already but recently I had finally put real time and effort into it.

And since I believe that the best way to understand something is to get your hands dirty, that is what I have done, after I got a grasp of the core principles (or that is what I thought back then), I decided to code my own shared ledger simulator.

Initially, I also considered to look into the main existing code bases (e.g., the source code of the main/official Bitcoin client/miner or Ethereum's) since they are open source, but seeing code like thisput me off... That file is 3229 lines big!!! Plus it is written in C++.
Do not get me wrong, I truly believe Satoshi Nakamoto (i.e., whoever hides behind that name) is a genius and also a great software developer, but he/she/they for sure did not have readability as their main priority.

I also noticed that some other people h…